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Abstract
Multiverse analysis has been proposed as a powerful technique to

disclose the large number of degrees of freedom in data preprocess-
ing and analysis that strongly contribute to the current replication cri-
sis in science. However, in the field of imaging neuroscience, where
multidimensional, complex and noisy data are measured, multiverse
analysis may be computationally infeasible. The number of possible
forking paths given by different methodological decisions and analyt-
ical choices is immense. Recently, Dafflon et al. (2022) proposed an
active learning approach as an alternative to exhaustively exploring all
forking paths. Here, we aimed to extend their active learning pipeline
by integrating latent underlying variables which are not directly ob-
servable. The extension to latent outcomes is particularly valuable for
computational psychiatry and neurocognitive psychology, where latent
traits are conceptualized as common cause of a variety of observable
neural and behavioral symptoms. To illustrate our approach and to
test its direct replicability, we analyzed the individual organization and
topology of functional brain networks of two relatively large samples
from the ABCD study dataset (N = 1491) and HCP dataset (N = 833).
Graph-theoretical parameters that take into account both brain-wide
and region-specific network properties were used as predictors of a la-
tent variable reflecting general cognition. Our results demonstrate the
ability of the extended method to selectively explore the multiverse
when predicting a latent variable. First, the low-dimensional space
created with the proposed approach was able to cluster the forking
paths according to their similarity. Second, the active learning approach
successfully estimated the prediction performance of all pipelines in
both datasets. To interactively explore the multiverse of results, we
developed a Shiny app to visualize the predictive accuracy resulting
from each forking path and to illustrate the similarity between pipelines
created by different combinations of data processing choice. The code
for active learning and the app are available at the Github repository
ExtendedAL.
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Introduction
The large number of options available to researchers for pre-

processing and analyzing their data has been cited as one of the reasons
for the replication crisis in science (Paul et al. 2022). A huge heterogene-
ity in data analysis has recently been reported in cognitive neuroscience
based on functional magnetic resonance imaging (fMRI) data (Botvinik-
Nezer et al. 2020). The complexity arising from the nature of such data,
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characterized by inherent noise and multidimensionality, requires ex-
tensive pre-processing to remove machine and physiological artefacts.
It further offers many different ways to parameterize the properties of
such multidimensional data. This means, for example, that there are
many ways to define the characteristics of brain networks from fMRI
time-series data, increasing the variability of research results.
Multiverse analysis has beenproposed as a promising approach to ad-

dress this problem (Steegen et al. 2016), because it allows researchers
to systematically explore different analytical choices, called forking
paths, and report the multiplicity of their findings. The primary goal of
a multiverse analysis is thus to assess the robustness of research find-
ings, thereby reducing the likelihood of false-positive discoveries and
mitigating the replication crisis. However, performing multiverse anal-
ysis presents its own challenges, particularly in network neuroscience,
which deals with high-dimensional fMRI data and where the number
of forking paths can be excessive (Dafflon et al. 2022; Botvinik-Nezer
et al. 2020).
Recently, Dafflon and colleagues (2022) proposed an active learning-

based approach to estimate the outcomes of multiple forking paths
without the need for exhaustive computation of themultiverse (Dafflon
et al. 2022). Their algorithm uses Bayesian optimization to sample a
subset of forking paths and manually compute their outcome, and it
uses Gaussian processes to estimate the outcome of the remainder.
Dafflon et al.’s (2022) work applied this active learning approach to 1)
predict brain age and 2) classify individuals with autism, using graph
measures derived from fMRI-based whole brain networks. Both of
these supervised learning problems are concerned with predicting an
observed outcome variable.
However, in computational psychiatry and neurocognitive psychol-

ogy, many outcome variables of interest cannot be measured directly
and therefore reflect ”latent” variables. To facilitatemultiverse analyses
in these fields, we extendedDafflon et al.’s (2022) active learning-based
approach in two key ways. First, we augmented the approach with a
predictive model that includes an endogenous variable that is latent
and can be indicated by quantitative or ordinal measures. To accom-
plish this, we combined the proposed method by Dafflon et al. (2022)
with Structural Equation Modeling (SEM, with latent variables) to infer
predictive accuracy of brain measures with respect to a latent variable.
The original study by Dafflon used active learning to infer the predic-

tion performance of each forking path without exhaustively sampling
each of them. In short, active learning is an approach in machine learn-
ing where the model, during learning, can select the data that need to
be labeled with the desired output (Settles 2009). SEM is a statistical
analysis tool used to model the relationships between observed and
latent variables (Kline 2015). In this study, the latent, non-directly mea-
surable variable is general cognition g, which is estimated from various
directly observable measures of performance on cognitive tasks (e.g.,
memory, reasoning and processing speed). In 1904, Spearman found
that all indicators of cognition were positively correlated, referred to
as the positive manifold, which is interpreted as general intelligence g
(Spearman 1904). Recent studies have found that g is strongly associ-
ated with school achievement (for a review see Kriegbaum et al. 2018).
Given the importance of g, a growing body of research in neuroscience
has investigated the neural basis of g from the perspective of neurons
(Bruton 2021), brain areas’ activation patterns (Kovacs and Conway
2016; Jung and Haier 2007), and more recently, brain networks (Barbey
2018; Barabási et al. 2023).
In addition to combining Dafflon’s method with SEM, we propose an

alternative approach to estimating forking path (pipeline) similarity that
incorporates both brain-wide and region-specific graphmeasures. Note
that the approach proposed by Dafflon et al. (2022) is only applicable
to region-specific graph measures. Importantly, global graph measures,
such as global efficiency and modularity, are relevant to predict behav-
ioral outcomes in many applications (Alavash et al. 2015). To assess the
effectiveness of our extended multiverse analysis approach and to test
its direct replicability across datasets, we conducted a study on two
large samples of NABCD = 1491 individuals from ABCD study and NHPC
= 833 from HCP study (see Materials for the details of the datasets).
Moreover, to better and more dynamically explore the multitude of
results, we created an interactive visualization of the multiplicity of
outcomes resulting from an exhaustive multiverse analysis using the
Shiny app platform. The corresponding code is openly available at the
Github repository ExtendedAL.

Methods
We illustrate and test our multiverse analysis approach to predict-

ing a latent outcome variable by examining the relationship between
graph measures of the functional human connectome and g. We use
data from two open-access studies. The first dataset was derived from
the Adolescent Brain Cognitive Development (ABCD) study, the largest
shared neuroimaging dataset to date. In order to obtain both brain
and behavioral data, we used the ABCD data release 2.0.1. The sec-
ond dataset was obtained from the Human Connectome Project (HCP)
Young-Adult study .

Brain Data
Functional connectivity (FC) between brain regions was analyzed

using functional magnetic resonance imaging (fMRI) data. Specifically,
the blood oxygenation level dependent (BOLD) time series of different
brain regions were measured as an indicator of underlying neuronal
activations. The pairwise correlations between BOLD time series were
calculated as an estimator of functional brain connectivity. For the
ABCD dataset, we used previously preprocessed resting-state fMRI
data (J. Chen et al. 2022) available at NDA repository. . Mean BOLD
time series across voxels were extracted froma total of 419 brain regions,
400 cortical regions of interest (ROIs) from Schaefer’s atlas (Schaefer
et al. 2018) and 19 subcortical ROIs (Fischl et al. 2002). We computed
the pairwise correlations between time series which resulted in func-
tional connectivity matrices (419 x 419 brain areas) for 1491 individuals.
The data have been preprocessed to remove motion-related, machine-
related, and physiological noise (see J. Chen et al. 2022 for details). For
the HCP dataset, we used data from our previously published study
with NHPC = 833 individuals (Kristanto et al. 2023). In contrast to the
ABCD dataset, time series of 360 brain regions were extracted accord-
ing to the multimodal parcellation atlas and functional connectivity
matrices with a dimensionality of 360 x 360 were calculated (Glasser,
Coalson, et al. 2016). The MR data were also cleaned from artifacts us-
ing a minimal preprocessing pipeline from HCP (Glasser, Sotiropoulos,
et al. 2013).

Behavioral Data
The aim of the present analysis was to explore the relationship be-

tween graph measures and a latent variable of general cognition, g. We
usedperformance scores of five behavioral tasks available in bothABCD
and HCP datasets: Picture Vocabulary (PicVocab), List Sorting Memory
(ListSort), Pattern Comparison (PattComp), Picture Sequence (PicSeq),
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and Reading Comprehension (Reading) (Fig. 1B). Picture Vocabulary
and Reading Comprehension are known as indicators of crystallized
intelligence, List Sorting memory is an indicator of reasoning ability,
Pattern Comparison is an indicator of processing speed ability, and
Picture Sequence is an indicator of memory.
All the tasks are part of the National Institute of Health Toolbox

Cognition Battery NIH Toolbox. The details of the behavioral tasks are
available fromCasey et al. 2018 for ABCDdataset and Barch et al. 2009
for HCP dataset.

Multiverse Analysis Approach
Since the goal of this study is to extend a previously proposed

method, in this section we first briefly describe the published method
and point out the aspects that we aim to extend. Second, we explain
our proposals for extending the aspects we point out from the original
study. Third, we explain the design of ourmultiverse analysis and finally,
we briefly explain the implementation of the extended method.

An Active Learning Approach
An active learning-based method for exploring the results in a mul-

tiverse analysis of predicting observed age of individuals from brain-
based graphmeasures has been recently proposed (Dafflon et al. 2022).
This method aims to estimate the analysis results (e.g., prediction per-
formance) from a series of possible forking paths (544 and 384 forking
paths in total for age prediction and autism classification, respectively)
by sampling only a small fraction of them and inferring the other forking
paths. The approach has been shown to be comparable to an exhaus-
tive analysis, where each fork is executed sequentially to obtain the
prediction.
Dafflon’s et al. active learning approach for multiverse analysis con-

sists of several steps. The first step is to prepare the brain andbehavioral
data and partition them into three sets. The first dataset is used to cre-
ate the low dimensional space for embedding the similarity of graph
measures obtained by all forking paths. The second dataset is used for
prediction/classification, and the third dataset is for evaluation, thus
to assess the performance of the best pipelines identified by active
learning.
In the second step of the multiverse analysis method an embedding

into a two-dimensional space of the forking path is created based on
the similarity of the graphmeasures obtained by each forking path. This
step is performed in the first dataset. In detail, the output of each forking
path is a vector containing a graph measure of all brain regions. To
obtain the forking paths’ similarity, the cosine similarity of these vectors
between any two individuals is computed, resulting in a similaritymatrix
of (N)*((N)-1)/2 x (NF) , where (N) is the number of individuals and
(NF) is the number of forking paths (for a detailed illustration, please
refer to Fig. 8 of the original article (Dafflon et al. 2022)). Note that
this step requires a vector as the output of all forking paths and is,
therefore only applicable to region-specific graph measures. Next, the
matrix is submitted to a dimension reduction algorithm to obtain a
two-dimensional space of forking paths’ similarity, which we refer to as
the ”search space” with the dimension of 2 x (NF).
The third step – which aims at method evaluation – is to perform

an exhaustive analysis to obtain a ”true prediction accuracy” of each
forking path. This step is performed on the second dataset. In the case
of age prediction, this is done by predicting the age from the graph
measures as the output of each forking path. The end result of this
step is a vector of the true prediction accuracy of each forking path (e.g.,

evaluated by the mean absolute error between predicted and actual
age).
Finally, an active learning algorithm based on Bayesian optimization

and Gaussian processes is implemented in the search space to infer
the prediction accuracy of each forking path and to compare it with
the true prediction accuracy obtained from the exhaustive search. The
search space is a 2-dimensional space where the forking paths are rep-
resented as points in the space. The active learning first performs a
burn-in phase where it randomly selects 10 points and evaluates their
prediction accuracy. After this phase, more points (i.e., 40 points) are
selected using Bayesian optimization and the prediction accuracy of
those points is evaluated by predicting an observed outcome variable
(age in the application) using graph measures derived from the corre-
sponding forking paths. Finally, the Gaussian process is implemented
to estimate the prediction accuracy of the other points/forking paths
based on the selected points.
To test the robustness of the active learning, the whole analysis

is repeated 20 times, each with different starting points. The third
dataset is finally used to evaluate the prediction performance of the
best pipeline identified by the active learning in different repetitions.
However, we emphasize that here we are interested in using the active
learning to estimate the prediction performance of all possible forking
paths and in reporting the results from all forking paths.

Extension of the Method
Developing the search space that handles both brain-wide and region-
specific graph measures: As a first extension, we proposed a differ-
ent approach to generating the search space that allows the use of
brain-wide and region-specific graph measures. Specifically, the use of
brain-wide graphmeasures is in line with the current trend in behavioral
neuroscience that aims to associate a measure from the whole brain to
more general abilities such as g. It is important to note that the search
space is the low-dimensional representation of the similarity (or dis-
similarity) matrix between the forking paths. In the original study, the
cosine similarity of the graph measures for the brain regions between
all possible pairs of individuals was used to define the matrix. However,
this approach is not applicable when the output of the forking path is a
single value, which is the case for the brain-wide graph measures (e.g.,
global efficiency and modularity). The cosine similarity between two
single values is always 1 (cos 180°) because they overlap and are on
the same line. Therefore, no matter how much the forking paths differ
when computing the brain-wide graph measures, the cosine similarity
will always be 1 for any given pair of individuals. Notably, the absolute
differences and mean absolute differences can also be used to replace
cosine similarity, since they can handle graph measures with single and
multiple values. However, since we include the options of graph mea-
sures in the forking paths, and thus different forking paths can have
different graph measures, using (mean) absolute difference may not
work when comparing forking paths with different graph measures. To
overcome this challenge, we propose a different approach to construct
the search space from the similarity matrix of the forking paths with
brain-wide and region-specific graph measures, as shown in Fig. 1A. In
detail, performing the analysis on the left side of Fig. 1A (all steps within
the black box) for all forking paths results in a 3-dimensional matrix
of size (NF) x (N) x (NR), where (NF) is the number of forking paths,
(N) is the number of subjects, and (NR) is the number of brain regions.
Next, the similarity between a pair of forking paths is calculated for
each brain region (right side of Fig. 1A). This is done by computing the
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Figure 1: (A) Illustration of an alternative approach that handles both brain-wide and region-specific graph measures to create the search space.
(B) A diagram of the SEM for predicting general cognition (g).
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Pearson’s correlation coefficient between two graph measure vectors
of two forking paths in each brain region across individuals. The corre-
lation coefficient fills the cells in the matrix at the top right of Fig. 1A.
There are (NR) matrices, where each matrix has the size of (NF) x (NF).
Importantly, the differences between forking paths with brain-wide and
region-specific brain measures appear in these matrices of (NF) x (NF).
Note that columns and rows represent forking paths. For the cells with
both column and row representing forking paths with brain-wide graph
measures, the values are identical across brain regions ((NR)) since the
brain-wide graph measures do not vary across regions. In contrast,
for the cells with column and/or row representing forking paths with
region-specific graph measures, the values are different across brain
regions since the graph measures are different across regions. Next,
the average of these matrices across brain regions is computed by first
transforming them using Fisher’s z-transformation to account for the
nonlinearity of the correlation coefficients (Silver and Dunlap 1987).
Notably, the averaging only affects the cells containing forking paths
with region-specific graph measures, but not the forking paths with
brain-wide graph measures, since the values are identical across brain
regions. The averaged matrix is transformed back into a correlation
matrix before being subjected to the dimension reduction approach to
obtain the search space of size 2 x (NF).
In particular, a step to reduce the dimension (i.e., number of fea-

tures) of each forking path is a key step to perform the active learning
algorithm with small number of observations (i.e., 144 forking paths).
The step allows the creation of a low-dimensional search space for the
active learning. Using the similarity matrix (with a size of 144 x 144,
where 144 is the number of forking paths) as the active learning search
space will require much more observations/forking paths which are
distributed across space in order to implement the active learning, since
each forking pathwill have 144 features or dimensions. Here, we showed
that, although we reduced the number of dimensions, the results of
the search space in the lower 144 x 2 space, still retains the information
related to the similarity between forking paths, where similar forking
paths are located close to each other. In addition, we also found that
the search space with only two dimensions allows active learning to
mimic the results of the exhaustive search where we computed the
performance of each forking path (see Results).

Integrating active learning approach with SEM: The second extension
of the multiverse analysis proposed here involves integrating the SEM
model with active learning to infer the explained variance of a latent
outcome variable from graph measures. Unlike the method in the origi-
nal multiverse analysis (Botvinik-Nezer et al. 2020) which used only
observed variables, the extension allows for inferring latent outcome
variables commonly of interest in computational psychiatry and neu-
rocognitive psychology. To do so, we replace the prediction model with
SEM implemented using the semopy package (Igolkina and Meshch-
eryakov 2020; Meshcheryakov et al. 2021). The predictive performance
of each forking path is evaluated by the explained variance of the latent
variable from graph measures. Therefore, the exhaustive search will
output a ”true prediction accuracy” vector, which is indicated by the ex-
plained variance of each forking path. Active learning is then performed
to infer this value. Fig. 1B shows a schematic of the SEM used in the
present study to evaluate the proposed approach. The latent variable
reflects general cognition, indicated by 5 items behavioral measures
(see Materials). The latent variable is then predicted by graphmeasures
of the connectome as described above. The explained variance of the
latent variable becomes the predictive performance of each forking

path.

Interactive visualization of themultiverse analysis results: An interac-
tive visualization of the results of all forking paths is the final extension
of the multiverse analysis approach proposed here. For this we used
the Shiny package (Chang et al. 2023) in R the software for statistical
computing (R Core Team 2021). A graph visualization based on force
network uner networkD3 package (Allaire et al. 2022) was created to
represent the multiverse where the nodes are the forking paths and
the edges are the relationships between the forking paths. Notably, we
set the node size to represent the prediction performance of the corre-
sponding forking path. A larger node indicates that the corresponding
forking path has higher prediction performance. Moreover, the relation-
ship between forking paths is represented by the similarity between
them, which was taken from the matrix of average similarity between
forking paths (Fig. 1A). We also added some features to the shiny appli-
cation. First, hovering the mouse over the nodes will trigger the name
of the forking paths and all other connected forking paths. Clicking
on a node brings up a dialog box with the corresponding forking path
and its prediction performance. Hovering over the edges will show the
degree of similarity between connected forking paths. Finally, we also
incorporated some option buttons where the user can select a specific
forking path and explore other paths connected to it. In addition, a
slider option allows users to specify the threshold of similarity between
forking paths (e.g., to find the forking paths that are connected by a
correlation coefficient of at least 0.8).

The Multiverse of the Present Study
In this study, a multiverse analysis was performed in which a latent

variable of g was predicted from graph measures derived from fMRI
data. First, the investigated forking paths were identified through a sys-
tematic literature review on the multiverse of fMRI data preprocessing
and fMRI graph analysis steps (paper in preparation). This multiverse
covers a wide range of pre-processing and analysis steps in fMRI-based
graph analysis including structural image pre-processing, functional
image preprocessing, noise/artifact removal, functional connectivity
definition, and network definition. In this study, we focus only on the
small fraction of pre-processing paths which we call data multiverse.
Analysis paths were pre-dominantly selected if the corresponding op-
tions are variable across studies and are highly controversial:

• Paths for handling negative correlations: Use absolute values, keep
negative values, assign 0 values to the negative values, discussed
in G. Chen et al. 2011;

• Paths for Controlling graph sparsity: 50%, 30%, and 10%, dis-
cussed in Franco 2022. Notably, these options cover a variety of
network sparseness where ‘50%’ represents a relatively dense net-
work, while 10% represents a sparse network with only 10 percent
of all possible connections;

• Paths for defining graph edges: weighted and binarized, discussed
in Xiang et al. 2020;

• Paths for computing graph measures: strength, betweenness cen-
trality, clustering coefficient, eigenvector centrality, local effi-
ciency, global efficiency, modularity, and participation coefficient.
for detail of each measure please refer to Brain Connectivity Tool-
box (Rubinov et al. 2009).
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In total, there are 3 x 3 x 2 x 8 = 144 different forking paths. Note that
modularity, global efficiency, and participation coefficient are brain-
wide graphmeasures, while the rest are region-specific graphmeasures.

Implementation
Overall, the implementation of the proposed method is similar to

the original study. In the first step we divided the data into 3 sets by
keeping the similar ratio of the original study (seimilar number for set 1
and set 3, and higher number for set 2). Since we had a larger sample
size in both datasets than the original study, for ABCD dataset, we used
350 individuals to define the search space, 791 individuals to perform
the prediction based on the SEM, and 350 individuals to validate the
best-performing forking paths identified by active learning. We kept the
ratio for the HCP dataset: 200 individuals to define the search space,
433 individuals to perform the prediction based on the SEM, and 200
individuals to validate the best-performing forking paths identified by
active learning. Notably, we are more interested in reporting the results
from all possible forking paths and not in finding the best-performing
forking paths. The validation here further confirms the robustness of
the results obtained by active learning from different repetitions using
different forking paths in burn-in/initialization phase.
To create the search space, we followed the pipeline shown in Fig. 1A.

In line with the result of the original study, we appliedmultidimensional
scaling (MDS) as a dimension reduction method, because this embed-
ding approach was shown to perform best in Dafflon et al. 2022. Fur-
ther embedding methods can be explored in the future. The exhaustive
search was then performed to obtain the ”true prediction performance”
vector of the explained variance of the latent variable for all forking
paths. Notably, for the SEMmodel to predict the latent variable by the
graph measures, we only used the brain areas in dorsal attention and
fronto-parietal networks (Schaefer et al. 2018; Yeo et al. 2011). The areas
of these networks were found to be associated with g (Jung and Haier
2007; Hilger et al. 2020). In total, we have 77 and 89 brain areas for the
ABCD and the HCP datasets, respectively, to predict g. Active learning
was then performed to quantify the explained variance in the latent
variable, which was further compared with the result of the exhaustive
search. Since we had a smaller number of pipelines as compared with
the original study, we used different numbers of forking paths to train
the active learning (i.e., 10 points randomly selected for the burn-in
phase and 20 points selected using Bayesian optimization). We set
the active learning to be exploratory, with a kappa of 10, following the
result of the original study. We also run the active learning 20 times
with different starting points to evaluate its robustness. For each iter-
ation, we identified the best performing forking path. The robustness
is indicated by the replicated best-performing forking paths identified
across repetitions. Finally, we used the third dataset to validate the
prediction performance of those best-performing forking paths.

Results
The search space from the proposed method
The first result of the present study was the creation of a low-

dimensional space (search space) by using the newly proposed ap-
proach to deal with both brain-wide and region-specific brainmeasures.
As described in the original study (Botvinik-Nezer et al. 2020), the
creation of the search space mainly aims to capture the similarity of
the forking paths in the 2-dimensional space with the constraint that
similar forking paths should stay close to each other.

The search space generated by our proposed approach shows that
the forking paths are well distributed in the space, as shown in Fig. 2
for both datasets. More importantly, there is considerable structure
in the location of the different forking paths, meaning that especially
the similar types of graph measures, illustrated by different shapes, are
generally proximal. Moreover, we see a clear distinction between the
forking paths calculating graph measures related to integration (e.g.,
global efficiency and participation coefficient) versus segregation (e.g.,
modularity and local efficiency). This observation is true for both data
sets. For the ABCD dataset (Fig. 2A), the forking paths of the integration
graph measures are mostly located in the upper right part of the space,
while the forking paths of the segregation graph measures are mostly
located in the lower left part of the space. For the HCP dataset (Fig. 2B),
the forking paths of integration graph measures are mostly located
in the upper part of the space, while the forking paths of segregation
graph measures are mostly located in the lower part of the space. This
finding suggests that in both dataset, the proposed method to create
a two-dimensional search space, was able to cluster the forking paths
according to their similarity. In order to assess the similarity between
the spaces from both datasets, we performed clustering analysis in the
low-dimensional spaces from both datasets and computed the Rand
Index ((RI)) of the clustering results, which is the ratio between the
number of matching pairs and the number of pairs (Hubert and Arabie
1985). The (RI) value of ’0’ indicates that two clustering results are com-
pletely different, while a value closer to ’1’ represents high agreement
between two clusterings. We defined the optimal number of clusters
using the Elbowmethod based on the intra-cluster sum of squares, also
known as inertia (Thorndike 1953). For both datasets, we found that
the optimal number of clusters is 3. An (RI) value of 0.71 was deter-
mined for these three clusters, indicating that the clustering results in
the low-dimensional spaces of the two data sets were very similar.
Given these results, first we conclude that the proposed similarity

evaluation approach is suitable to create a low-dimensional space that
serves as the search space for active learning where similar forking
paths tend to be close to each other. Second, we found that the pro-
posed approach can be replicated in a different dataset in terms of
clustering results from the low-dimensional space. It is also important
to note that the slight differences in terms of clustering results from
the low-dimensional space between the data sets may be due to the
differences in terms of the number of individuals available to create
the low-dimensional space and the number of nodes in the FC (419 and
360 nodes for ABCD and HCP datasets, respectively).

Active learning for guided multiverse analysis with SEM
We implemented the proposed extensions of the guided multiverse

analysis on the ABCD study and HCP datasets to predict the latent
variable reflecting g using graph measures from fMRI data. The results
are shown in Fig. 3. First, Fig. 3A captures the prediction performance
of all forking paths when the exhaustive search (i.e., manual execution
of all forking paths) was performed, left panel is for ABCD dataset
and right panel is for HCP dataset. It can be seen that region-specific
graph measures outperform brain-wide graph measures in explaining
the variance of the latent variable. The prediction performance shown
in Fig. 3A serves as the “true prediction performance” to be used to
evaluate the performance of the active learning to guide the multiverse
analysis.
Next, Fig. 3B shows how active learning selects the training points

(=forking paths) in 5, 10, 15, 20, and 30 iterations and infers the predic-
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Figure 2: The visualization of forking paths in low-dimensional space for the ABCD dataset (A) vs. the HCP dataset (B). The items with different
features (i.e. texture, color, shade, and symbols) represent the forking paths (NF = 144) in two dimensional space (see Methods).

tion performance of the search space in different iterations, left panel is
for ABCD dataset and right panel is for HCP dataset. After 30 iterations
(e.g., 30 training forking paths are selected), the active learning can
satisfactorily mimic the prediction performance of all the forking paths
from the exhaustive search. Notably, the Spearman correlations of the
prediction performance of all forking paths between exhaustive search
and active learning are 0.69 and 0.75 for ABCD and HCP datasets,
respectively. This shows that the rank orders of the forking paths in
terms of prediction performance obtained by exhaustive search and
active learning are sufficiently similar. Next, we ran the active learning
over 20 repetitions, where each repetition randomly selects different
training points. Fig. 4 shows the comparison of prediction performance
between exhaustive search and active learning across repetitions in the
ABCD (Fig. 4A) and the HCP (Fig. 4B) datasets. The figures on the left
panel are line plot of the Mean Absolute Error (MAE) of the prediction
performance (explained variance of g) between the active learning and
exhaustive search in 20 repetitions with different points for training.
For both datasets, we found the MAE is around 0.05 for all repetitions.
The figures on the right panel show the distribution of Spearman cor-
relations of the prediction performance of all forking paths between
exhaustive search and active learning across 20 repetitions. The corre-
lations, which range from0.37 to 0.75 for ABCD dataset, and from0.58
to 0.77 for HCP dataset, indicate that active learning robustly mimics
the prediction performance of all forking paths obtained from exhaus-
tive search. The robustness of the active learning is also supported by
the identification of similar best-performing forking paths across 20
repetitions. For the ABCD dataset the best-performing forking path
is the following: keep the negative correlations, use a sparse network
with a threshold of 10%, use a weighted network, and compute local
efficiency as the graphmeasure. The analysis on HCP dataset identified
a similar best-performing forking path across 20 repetitions: keep the
negative correlations or set them to zero, use a sparse network with a
threshold of 10%, use a weighted network, and compute either local

efficiency or betweenness centrality as the graph measures.

Interactive visualization of multiverse outcome
A screenshot of the interactive application (available online at

https://meteor-oldenburg.shinyapps.io/ExtendedAL/) is shown in Fig. 5.
Note that the results displayed in the interactive visualization originated
from the ABCD dataset. When the threshold for the relationship (sim-
ilarity, right bottom matrix in Fig. 1) between the forking paths is set
to a higher threshold (e.g., 0.7), the clusters of the forking paths are
shown based on the corresponding graph measures. Consistent with
the search space discovery, the interactive visualization also shows that
the similar forking paths (e.g. with similar graph measures) are highly
correlated (connected) with each other. The user can also explore dif-
ferent thresholds to investigate the relationships between the forking
paths. Moreover, the user can also select a particular forking path to
explore how it is connected to other forking paths. For example, as also
illustrated in the red box in Fig. 5, selecting the “betweenness centrali-
tyweighted0.1abs” forking path will show the other forking paths that
are connected to it.

Discussion
The present study has extended a previously proposed method for

a guided multiverse analysis of fMRI based graph theory measures
to predict behavioral outcomes (Dafflon et al. 2022). We show that
our extensions perform well, allowing the use of both brain-wide and
region-based graph measures and the prediction of latent variables
from fMRI-based graphmeasures. In addition, since our goal is to report
on the multiplicity of findings, we propose an interactive visualization
of the results of the multiverse analysis, where the user can explore the
outcomes obtained by all possible forking paths.
We first discuss themethodological contribution of the present study.

The originally proposed method (Dafflon et al. 2022) is a valuable
contribution to research when it comes to addressing the issue of the
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Figure 3: The prediction performance of forking paths estimated by exhaustive search and active learning; left panel illustrates results from the
ABCD dataset and the right panel from the HCP dataset. (A) The prediction performances of all forking paths were also computed (exhaustive
search) and served as the ground truth for the active learning. (B) The active learning process to estimate the prediction performance of all

forking paths is visualized for different sampled points (5, 10, 15, 20, and 30 points). The first column is the estimated prediction performance of
the space. After 30 iterations, the estimation is comparable with the ground truth (Fig. 3A). The second column indicates which points have been

sampled. The third column is the prediction performance form the active learning versus exhaustive search for all forking paths.
4.2.J962E0F53 BrainiacsJournal.org/arc/pub/Kristanto2023MVMRIA © 2023 BHA
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Figure 4: Prediction performance of active learning compared to exhaustive search across different repetitions for ABCD dataset (A) and HCP
dataset (B). The left panel is the mean absolute error of prediction performance (explained variance of g) of all forking paths obtained by active
learning and exhaustive search across repetitions. The right panel is the distribution of the Spearman correlations between the prediction

performance of all forking paths obtained by exhaustive search and those from active learning across repetitions.
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researcher’s degree of freedom, as it provides an efficient method to
explore the multiverse of possible decisions in a guided, well informed
way. In line with this goal, we believe that this method can be further
extended to target a larger user community by adding more flexibility
and multiple features to it. Here, we added flexibility by allowing the
combination of brain-wide and region-specific graph measures and
added further modelling capabilities by integrating SEM as a predictive
model to explain a latent outcome variable. Next, we also emphasize
that the end product of this guided active learning method is not only
to identify the best performing forking paths, but also to provide a
full report of all possible forking paths and to gain knowledge about
the sensitivity of the results with respect to the decisions of different
researchers. In this sense, we introduced an interactive Shiny application
to visualize not only the results of all forking paths, but also how the
forking paths are related to each other in terms of similarity between
the graph measures obtained.
Second, we now discuss possible future applications building upon

the results of our study. Note that we predicted the latent variable
using only a subset of brain areas related to cognitive control and risk-
taking behaviors, and thus did not apply any regularization within the
prediction model. A future study may include more predictors, such as
areas from the whole brain, and apply regularization in the prediction
model aiming to extract the important brain areas for prediction. We
noticed that regularization options are also available in the semopy
package (Meshcheryakov et al. 2021) which can be explored in the
future. Relatedly, other features in semopy can also be explored to
elaborate onmore advanced SEMmodels which are potentially relevant
to test brain-behavior associations. Furthermore, the forking paths
we use in this study are also limited to data processing steps after
functional connectivity definition. Follow-up studies may also consider
additional forking paths related to fMRI data preprocessing in spatial
or temporal domains, especially those dealing with noise removal. For
these preprocessing decisions, a slightly different choicemay contribute
to significantly different results. In addition, other forking paths may be
found beyond the data pre-processing domain or data multiverse. For
example, one could consider different ways to compute the similarity
matrix across forking paths and whether the Fisher’s z-transformation
is part of the method multiverse.
On a related note, the number of training data (selected points/-

forking paths) can also be one important forking path for the method
multiverse since the performance of the active learning model also
depends on the selected training points. For an example, we performed
a small analysis with two different scenarios to select 30 training points:
(i) 5 points selected randomly and 25 points selected via Bayesian op-
timization and (ii) 30 points selected randomly. We found that after
completing the training with 30 selected points, the Spearman correla-
tions of the prediction performance of all the forking paths between the
active learning and exhausting search are 0.48 and 0.58 for case (i) and
case (ii) in ABCD dataset and 0.57 and 0.60 for case (i) and case (ii) for
HCP dataset. For reference, the Spearman correlations from the original
approach (10 points randomly selected and 20 points via Bayesian op-
timization) are 0.67 and 0.75 for ABCD and HCP datasets, respectively.
The results suggest that variability of the outcomes may occur with
different methods to select the learning points. Therefore, future stud-
ies may consider a more systematic multiverse analysis that considers
the forking paths in the methodological steps, or the multiverse of the
method (method multiverse). Moreover, the use of different behavioral
measures to define a latent variable (e.g. g), or the multiverse of the

outcome variable (outcome multiverse), can also be explored.
Notably, there are steps/forking paths with a huge number of op-

tions (the one with continuous variables or the one with infinite discrete
values) or with options that are mutually exclusive. In those cases,
the number of forking paths exponentially grows and the implementa-
tion of multiverse analysis may not be computationally feasible. The
approaches to define the garden of forking paths, or generally the ques-
tion how to correctly and efficiently perform a multiverse analysis, are
still being discussed. Del Giudice and Gangestad 2021, proposed that
assessment of equivalence of the options/forking paths in terms ofmea-
surement, effect, and power/precision may help to reduce the number
of forking paths. A sampling method across all the forking paths can
also be conducted to reduce the number of forking paths (Paul et al.
2022).
Finally, the visualization application is still being improved, both

visually and technically, e.g., by adding more features that allow users
to interact more easily with the multiverse. Moreover, integrating the
visualization app and the active learning approach into one toolbox will
be an important contribution to studies on multiverse analysis. Espe-
cially, the implementation into a toolbox with graphical user interface
(GUI) that can be generalized across different research domains will
facilitate the application of multiverse analysis in different fields.

Conclusion
Guidedmultiverse analysis (Dafflon et al. 2022) is necessary in fields

dealing with complex data structures, such as graph-theory fMRI based
brain-behavior association research. Such associations are widely stud-
ied in computational psychiatry and neurocognitive psychology, where
the behavioral variables of interest are inherently latent. Our extension
of the guided multiverse analysis method (Dafflon et al. 2022) makes
the approach suitable for a broader community interested in assessing
the robustness of findings across a large number of possible analyti-
cal choices when predicting a latent variable with graph theory fMRI
measures.
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Figure 5: Screenshot of the interactive Shiny application for the visualization of the multiverse of analysis results. The multiverse is visualized as
a network where the nodes are the forking paths and the edges indicate the similarity between the forking paths.
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