
rev
iew

op
en

2025 Volume 6
Issue 1 Edoc K46051E45

Optimal Boundary for Input Detection with LIF Neuronal Models*

Lubomir Kostal, Laura Sacerdote, Cristina Zucca†

Abstract
We investigate information transmission in neuronal models based

on Brownian motion and the Ornstein–Uhlenbeck process, in which3

neuronal spiking times are modeled as first passage times through os-
cillating boundaries. Using mutual information and mutual information
per unit time as metrics, we analyze how boundary oscillation parame-6

ters and input variability influence coding efficiency. Our analysis re-
veals complex dependencies on input variability and diffusion strength,
including non-monotonic effects of input variance and unexpected9

increases in information with diffusion strength in the Ornstein–Uh-
lenbeck case. We also identify the existence of optimal oscillation
frequencies, whose values depend on the specific information measure12

used.
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Introduction
Brownian motion, {Bt, t ≥ 0}, and the Ornstein–Uhlenbeck pro-18

cess, {Xt, t ≥ 0}, both characterized by the same diffusion coef-
ficient σ2 but different drift terms, µ and µ + τXt (with τ > 0),
respectively, are widely used to describe the evolution of a neuron’s21

membrane potential (Sacerdote and Giraudo 2012). These models,
known as Integrate-and-Fire and Leaky Integrate-and-Fire models, rep-
resent neuronal spiking times as the first passage times (FPTs) of the24

underlying processes across a threshold. In this setting, the neuron acts
as an integrator of external stimuli, with the input incorporated through
the parameter µ. The FPT through a given boundary is thus interpreted27

as the neuron’s output. A key problem in this framework is to infer
unobserved input from observed output.
In this work, using the aforementioned models, we investigate how30

much information about the input parameter µ can be transmitted
through the observed output. Specifically, we explore the existence of
optimal boundaries, where optimality is defined in terms of maximiz-33

ing information transmission. We focus on oscillating boundaries and
examine both the existence of an optimal oscillation amplitude and the
influence of oscillation frequency.36

*Report presented 2025-06-02, Neural Coding 2025, 16th International Neural
Coding Workshop, Ascona Switzerland.
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Methods
In our study, we treat the input µ as a random variableM with a

given probability density function fM (µ). The input-output relation- 39

ship is then described by the conditional probability density function
fT |M (t|µ), representing the distribution of the first passage times
T = t for a given inputM = µ. The amount of information (in 42

bits) about the inputM conveyed by the output T is quantified by the
mutual information I(M ;T ) (Gallager 1968),

I(M ;T ) =

∫
M

i(µ;T )fM (µ)dµ

where i(µ;T ) is the input-specific information, which measures how 45

much information is associated with particular inputM = µ (Kostal
and D’Onofrio 2017)

i(µ;T ) =

∫
T
fT |M (t|µ) log2

fT |M (t|µ)
fT (t)

dt

and fT (t) is the marginal probability density of the output T 48

fT (t) =

∫
M

fT |M (t|µ)fM (µ)dµ.

To enable comparison across different boundaries and distributions of
the drift µ, we standardize our indexes. In addition to mutual infor-
mation I(M ;T ) and input-specific information I(µ;T ) we also con- 51

sider the mutual information per unit of time, denoted by IT (M ;T ).
This quantity, which originates from the classical information-per-cost
framework (McEliece 2002, Ch.2), is especially useful in our context, 54

even though it is still relatively underutilized in computational neuro-
science (Kostal and Lánský 2006). While mutual information I(M ;T )
quantifies the number of bits that can theoretically be transmitted per 57

input-output cycle, the output variable T represents time (i.e., FPT
in seconds). Hence, it is natural to consider the information rate, or
information per unit time (in bits per seconds), defined as: 60

IT (M ;T ) =
I(M ;T )

〈T 〉
,

where 〈T 〉 =
∫
T tfT (t)dt is the mean FPT induced by the given

probability distribution of input values.
For both the Integrate-and-Fire and Leaky Integrate-and-Fire mod- 63

els, we introduce an oscillating threshold defined by

S(t) = c+ d sin(2πat)
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where c is the baseline threshold, d is the amplitude, and a is the fre-
quency of oscillation. We assume that the random inputM follows66

a shifted Gamma density with parameters α > 0, β > 0 and shift
µ0 > 0, given by

fM (µ) =
βα

Γ(α)
(µ− µ0)

α−1e−β(µ−µ0).

We allow both the mean and the variance of the input distribution69

Gamma distribution to vary. Our analysis focuses on how the mutual
information I(M ;T ) and the mutual information per time IT (M ;T )
respond to changes in the parameters of the boundary, particularly72

amplitude, d, and frequency, a, of oscillation.

Results
Some of the results obtained in this preliminary study are unex-75

pected. For instance, when examining the dependence of mutual in-
formation on two types of variability—input variance Var(M) and dif-
fusion strengthσ2, a non-monotonic dependence emerges between78

mutual information and Var(M), even when the expected value 〈M〉
is held constant.
Furthermore, while increasing σ2 generally leads to a decrease in81

mutual information I(M ;T ) for both the Brownian Motion and the
Ornstein-Uhlenbeck processes, in the Ornstein-Uhlenbeck case we
observe counterintuitive scenarios where increasing σ2 results in an84

increase in the mutual information per unit time IT (M ;T ).
Additional findings concern the existence of ane optimal oscillation

frequency a. Interestingly, the optimal value depends on whether we87

consider total mutual information or mutual information per unit time.
Moreover, in the Brownianmotionmodel, the frequency thatmaximizes
information is independent of σ2, whereas in the Ornstein-Uhlenbeck90

model, it appears to vary with σ2.

Conclusion
These results suggest that oscillatory mechanisms and stochastic93

variability can jointly enhance neural coding performance, providing
nuanced picture thanmodels with static thresholds. Future work should
extend this analysis to more general input distributions, larger neuronal96

populations, and experimental validation, in order to better understand
how oscillatory dynamics and noise contribute to information process-
ing in the brain.99
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