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Abstract
Since the first genome-wide association study (GWAS) identifying

variants associated with myocardial infarction was published over 20
years ago, GWASs have emerged as a powerful tool for exploring the
genetic basis of complex traits. To date, hundreds of thousands of sta-
tistically significant associations have been reported across thousands
of human phenotypes. Nevertheless, the design, implementation, and
analysis of GWASs remain complex, and the results are easily misin-
terpreted. Common mistakes include 1) assuming that variants with
the strongest statistical associations are causal instead of correlative, 2)
believing that associated loci act through nearby genes, and 3) overem-
phasizing the contribution of individual loci to the total variability of
particular traits. Clinical assays have been designed using the results
of GWAS that rely on the contribution of such erroneous data inter-
pretations to predict clinical phenotypes, reactions to medications or
foods, and/or propensity to develop diseases. The failure to recognize
these errors due to fallacies in logical reasoning and statistical infer-
ence presents problems for both the scientific community when the
wrong targetsmay be prioritized in future research studies, as well as for
communication with the general public when our understanding of the
genetic basis of important traits may bemisrepresented and overstated.
Here, we review statistical data quality, analysis, and meta-analysis, of
GWAS results with an emphasis on accurate and reliable interpretation.
Placed in the appropriate context, GWASs enable genome-wide discov-
ery of loci associated with diverse traits, but they constitute only a first
step towards understanding the biological mechanism(s) underlying the
observed associations. Scientific elucidation of these biological mech-
anisms must be required to establish causality with biochemical and
pathophysiological explanations for any putative statistical correlations.
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Introduction
Genome-wide association studies (GWASs) aim to identify associa-

tions of genetic variants with phenotypes (Visscher et al. 2017). Most
commonly, so-called single-nucleotide polymorphisms (SNPs) are con-
sidered in GWASs, and each available SNP is tested for association
separately. After more than 15 years of GWASs, thousands of genetic
associations were reported and partially replicated (Abdellaoui et al.
2023). Examples include identification of a female-specific associ-
ation between SNPs at the PAX1 enhancer locus and idiopathic sco-
liosis (Sharma et al. 2015), linking of TAF3 to control of corpuscular
hemoglobin concentration (Pistis et al. 2013), and discovery of the role
of introns of the FTO gene in obesity (Smemo et al. 2014; Claussnitzer
et al. 2016). Many GWASs focus on so-called complex traits and dis-
eases that are described by a polygenic architecture (Visscher et al.
2017). A trait with a polygenic architecture is influenced by thousands
of causal genetic variants with rather small effect sizes (Tam et al. 2019).
Examples include asthma, schizophrenia, body mass index, and human
height (Vicente et al. 2017; Tam et al. 2019; Yengo et al. 2022).
Consequently, massive efforts by the research community to collect

genetic and phenotypic data in large databases, such as the UK Biobank
(Bycroft et al. 2018), led sample sizes in GWASs to grow rapidly over the
years, enabling the identification of an increasing number of genetic risk
loci (Visscher et al. 2017). According to one projection, use of GWASs
to inform selection of drug targets and indications could double the
number of drug candidates that successfully pass from phase I clinical
trials to approval (Nelson et al. 2015). Nowadays, GWASs are considered
to be a success story that identified several important genetic factors
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Figure 1: Correlation does not prove causation; see Vigen (2023) for this and other examples of the correlation-causation fallacy.

of complex diseases, but GWASs also face challenges, pitfalls, and
limitations that we would like to discuss and review here.

Multiple Testing
As described above, each available SNP is tested for association

with the phenotype of consideration. The density of available SNPs
in a GWAS depends on the underlying platform used. Over time, the
number of genes tested in a single GWAS has grown, starting frommi-
croarrays of a few thousand followed by genetic imputations (predicting
genetic information based on reference panels), and expanding until,
at present, whole-exome and whole-genome sequencing datasets are
common (Tam et al. 2019). This implies that a typical GWAS incor-
porates more than a million common SNPs (DerSimonian and Laird
2015), leading to a substantial multiple testing burden. The established
significance level for so-called genome-wide significance in a GWAS
is p=5e-08 (Tam et al. 2019). This significance level corresponds to a
nominal level of 0.05 corrected for 1 million independent statistical
tests by the Bonferroni correction (Tam et al. 2019). More specific gene-
based tests, such as the versatile gene-based association study (VEGAS)
methodology, can arrive at appropriately corrected p-values by using
statistics on common genetic variation and the corresponding linkage
disequilibrium (LD) structures in reference panels such as the HapMap
project (Hecker et al. 2017). LD describes nonrandom association of
alleles at different loci resulting from complex interactions between
recombination, mutation, selection, and genetic drift (Slatkin 2008). It
provides the key patterns of information on which statistical methods
of fine-scale gene mapping rely (Slatkin 2008). A pitfall in replication
attempts is the winner’s curse (Zhong and Prentice 2010). The win-
ner’s curse describes the phenomenon that the effect sizes of genetic
variants that just passed the genome-wide significance level tend to
be overestimated (Zhong and Prentice 2010). This in turn, leads to
overestimated power calculations in replication GWASs and was one of
the driving factors for the lack of replication in early GWASs (Zhong and
Prentice 2010). A wide variety of statistical correction methods can par-
tially account for the winner’s curse effect, with empirical Bayesian, FDR
inverse quantile transformation, and bootstrap resampling methods
outperforming commonly used conditonal likelihood methods (Forde
et al. 2023).

Linkage Disequilibrium
Moreover, since nearby genetic variants are often in LD, the genetic

information for local SNPs is usually correlated (Tam et al. 2019; Lap-
palainen and MacArthur 2021). Consequently, the presence of a causal
genetic variant resulting in a significant association with the phenotype
also leads to a substantial number of significant associations for nearby
SNPs (Lappalainen and MacArthur 2021). Therefore, GWASs typically
report associated genetic risk loci that contain these multiple associa-
tions. A common pitfall is that a genetic variant with a genome-wide
significant association p-value is interpreted to be causal, although it
potentially only tags a causal variant through LD (Visscher et al. 2017).
This is an example of the causation-correlation fallacy.
Fine-mapping is an approach to tackle this problem (Schaid et al.

2018). Fine-mapping prioritizes a set of genetic variants thatmost likely
contains the causal variant at this genetic risk locus, often assuming the
presence of at most one causal SNP (Schaid et al. 2018). This proce-
dure incorporates LD information and the individual SNP association
statistics (Schaid et al. 2018). Interestingly, there are potential scenarios
with multiple genetic effects within the loci in which the most signif-
icant SNP is not causal, especially when the statistical power of the
study is low (Schaid et al. 2018). Recent fine-mapping approaches are
based on Bayesian computations (Schaid et al. 2018; Tam et al. 2019).
This purely statistical fine-mapping can be improved by incorporating
external biological information such as functional annotations. This
external information can be integrated into the prior distributions of
the Bayesian models and therefore guides these analyses.

Study Design
Another challenge in GWAS concerns the selected study design. The

design of a GWAS with regard to how the subjects are selected for
participation can impact the results (Heid, Huth, et al. 2009). Two time-
honored epidemiological designs for studying causality in the absence
of randomization are the case-control study and the cohort study. The
case-control design has been very successful in GWAS (Clarke et al.
2011). Likewise, many GWAS have taken advantage of existing cohorts,
such as the Nurse’s Health Study, provided that the phenotypes of
interest can be obtained. An alternative approach chooses subjects as
part of a random sample from a population. Random samples from
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selected populations are generally difficult and expensive to obtain,
but may be available in some countries as a part of ongoing research
programs, for example, the Framingham Heart Study in the United
States (Dawber 1980) and the KORA Study in Germany (Heid, Vollmert,
et al. 2005).
Another paradigm developed for GWAS involves the use of genomic

repositories or biobanks. The idea is to provide access to very large
data sets. Genotypes are recorded in a central repository without re-
gard to the phenotypic status of subjects. Selection bias may make
it difficult to interpret the results of such studies. Even more impor-
tantly, allele frequencies vary with genetic ancestries (Derks et al. 2022).
If phenotypic differences correlate with genetic ancestry in the study
population, often because of specific participant sampling procedures,
genetic association testing based on this phenotype can lead to false
positive findings if not appropriately controlled for genetic ancestry
(Derks et al. 2022). Furthermore, predictive models of quantitative
traits based on data from a single ancestry group can generalize poorly
to other populations, as with a predictive model of height found to
account for 45% of variation in European populations but only 14-24%
in others (Yengo et al. 2022).
The most established approach to adjust for genetic ancestry and

therefore reducing the likelihood for false positive associations is to
include principal components of genetic ancestry derived from genome-
wide data as covariates in the statistical association tests (Price et al.
2006). However, this approach is not guaranteed to fully adjust for
ancestry-induced signals, as even large data sets, such as that of the
1000 Genomes Project, may not have sufficient coverage of genetic
diversity in some populations (D. Lu and Xu 2013), and the urge to
increase sample sizes in recent GWAS can amplify this issue.
An approach to address the issue of population stratification is a

family-based study design (Rabinowitz and Laird 2000; Tam et al.
2019). Here cases, or affected individuals, and their family members
(ideally their parents) are chosen to be study participants. The fam-
ily members serve as the controls. Family-based study designs allow
genetic association tests for SNPs that are robust to population strati-
fication (Derks et al. 2022). They are particularly useful for observing
segregation of rare variants with very large effect sizes when those
variants segregate within a family (Visscher et al. 2017).
The classical example is the transmission disequilibrium test (TDT)

(Schaid 1998). The TDT considers affected offspring trios and tests the
observed allele transmissions against Mendelian expectations (Schaid
1998). Since the test statistic conditions on parental genotypes, the
test does not require any assumptions about the underlying allele fre-
quencies and distributions (Ewens and Spielman 1995). This concept
was extended to general pedigrees, general phenotypes, and groups
of genetic variants in the Family-Based Association Test framework by
Laird and Lange (2006).

Meta-Analyses
To achieve the desired large sample sizes, researchers combine their

association results in meta-analyses across cohorts and studies (Abdel-
laoui et al. 2023; Mikolajewicz and Komarova 2019; Steel et al. 2021).
Since meta-analyses can achieve the same results by combining sum-
mary statistics as with individual-level data (DerSimonian and Laird
2015), they also have the advantage that data resources can be com-
bined without sharing protected individual genetic information across
institutions and scientific groups. Several consortia of researchers and
institutions have formed to pool data and set standards for studies to

be included in metanalyses relevant to particular areas of health and
wellness, including the Psychiatric Genomics Consortium, the Genetic
Investigation of Anthropometric Traits (GIANT) Consortium, and the
Global Lipids Genetics Consortium (O’Donovan 2015; H. Park et al. 2016;
Klarin et al. 2018). The approaches to meta-analyses include fixed ef-
fects and random effects models (Steel et al. 2021). The latter explicitly
allows for heterogeneity in the data (DerSimonian and Laird 2015; Steel
et al. 2021). The combination of association results across studies with
varying genetic ancestry has the advantage that the differences in the
LD structure can lead to an improved resolution in the fine-mapping
step of genetic risk loci since the LD effects dilute (DerSimonian and
Laird 2015). However, careful interpretation is required. Since most
GWAS so far were based on participants of European genetic ances-
try, the analysis of other genetic ancestries and ethnicities has great
potential to reveal a refined picture of genetic associations and general-
izability across populations (Derks et al. 2022). Such meta-analyses
rely on accurate and detailed metadata to ensure that results across dif-
ferent studies are comparable (Mikolajewicz and Komarova 2019; Steel
et al. 2021). The NHGRI-EBI GWAS Catalog represents one attempt to
compile such data in an online repository on a large scale (Sollis et al.
2022).

From GWAS to Biology
Even though GWAS publications have reported thousands of genetic

associations with a plethora of complex diseases and traits, and recent
advances in fine-mapping in combination with large sample sizes have
pinpointed genetic variants with potential causal associations, the un-
derlying biological mechanisms of these associations remain largely
unknown. This is because the exact regulatory function of most GWAS
hits, which are often located in non-coding regions of the genome, is
poorly understood (Abdellaoui et al. 2023; Aguet et al. 2023). There-
fore, the role of a SNP and its downstream effects on other genes and
pathways is often unknown. Projects such as the Encyclopedia of DNA
Elements (ENCODE) are working to fill this knowledge gap by com-
piling an extensive repository of millions of human and mouse func-
tional elements, including protein-coding genes, regulatory RNA-coding
genes, and non-coding regions with known mechanistic functions, such
as promoters and enhancers (Moore et al. 2020). Similarly, the GEN-
CODEproject publishes extensive annotations of the human andmouse
genomes, including protein-coding genes, pseudogenes, and long non-
coding RNA genes (Frankish et al. 2020). Using such gene annotations
enables new approaches to weighting the significance of association
scores based on this prior knowledge in addition to LD and Bonferroni
correction (Kichaev et al. 2019). The candidate causal gene is com-
monly inferred based on the smallest physical distance, but recent
investigations showed that this might be misleading. One possibility to
gain further insights into the identified genetic associations is to study
molecular quantitative trait loci (QTLs) (Lappalainen and MacArthur
2021; Aguet et al. 2023). These SNPs are associated with molecular
phenotypes such as RNA expression, DNA methylation, or metabolite
levels (Aguet et al. 2023).
Colocalization analyses attempt to test if GWAS findings colocalize

with both molecular and expression QTLs (i.e., the same genetic variant
is implicated), and such successful colocalizations provide the basis
for mediation hypotheses (Rheenen et al. 2021). A systematic version
of this concept, a post-GWAS transcriptome-wide association study
(TWAS), tests for associations between traits and gene expression levels
imputed from eQTLs across the entire genome, while a proteome-wide
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Figure 2: Mixed measures? When are meta-analyses reproducible and valid? (New Cuyama sign image by Gogulski 2007.)

association study (PWAS) tests for associations with protein abundance
as predicted from population-level protein QTL (pQTL) data (Gedik
et al. 2023). By studying the downstream effects of genetic variants,
these approaches can identify genes that affect health via differences
in quantitatively measured expression traits better correlated with phe-
notypes even when the direct association between the genotypes and
phenotypes otherwise would be weak (Gedik et al. 2023).
One approach that has built on this idea further is the use of colo-

calization in conjunction with similarity of annotations from single-cell
gene expression, protein-protein interaction, and pathway participation
features to compute a polygenic priority score to identify associations
between non-coding loci and protein-coding genes that are likely to be
causal (Weeks et al. 2023). As noted in (Weeks et al. 2023), combin-
ing such similarity-based methods with complementary locus-based
methods can achieve better results than either one can alone. Taking
that reasoning even further, (Gazal et al. 2022) propose a framework
for arriving at combinations SNP-to-gene strategies and apply it to
select seven such strategies that together achieve higher recall than
attainable with any one strategy alone. Ultimately, GWAS alone cannot
determine the causal mechanisms behind human health and diversity,
which requires taking the next step of analyzing the GWAS-identified

candidate genes through both statistical and bench-based functional
testing (Gallagher and Chen-Plotkin 2018).

Direct-to-Consumer Testing
Some privately held laboratories, especially those offering direct-to-

consumer testing (US Food & Drug Administration 2019; Malgorzata
et al. 2021), have used GWAS data for the interpretation of genomic
tests for a variety of diverse indications including fear of heights to cat
allergy to anxiety to dietary advice. These kinds of indications often
have vague symptoms, little evidence of heritability, or are common
disorders that may have a multifactorial pattern of inheritance without
a specific genotype-phenotype association. The commercial labs often
describe the tests as available for personal amusement and not for
diagnosis of any specific condition. For the FDA-approved assays that
also run at these labs, the reported results are not based on GWAS data.
For example, some offer FDA-approved tests for pathogenic variants in
the genes associated with increased risk of the development of breast
or other cancers (National Human Genome Research Institute 2023).
Studies have identified ethical and legal concerns with the DTC testing
modality (Martins et al. 2022; Panacer 2023), and specifically with the
use of polygenic risk scores that are based solely on GWAS data (J. K.
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Park and C. Y. Lu 2023).

Conclusion
Genome-wide association studies identified thousands of genetic

associations with a wide range of phenotypes. As a consequence of the
polygenic architecture of complex traits and diseases, recent GWASs
reached sample sizes of 1 million samples to identify novel genetic
risk loci. However, the interpretation of GWAS results requires care-
ful consideration. Technical artefacts such as population stratification
can introduce false positive findings in GWAS and identified genetic
associations should always be replicated in independent studies. A
significant GWAS signal does not imply causality and the identification
of causal genetic variants within a genetic risk locus remains a challenge.
Furthermore, most GWAS hits are in non-coding regions of the genome
and mapping genetic associations to candidate genes for functional
follow-up analyses is non-trivial and of limited success so far. Overall,
the underlying mechanisms of genetic associations remain poorly un-
derstood and there is a risk of overinterpreting their individual relevance
in clinical risk prediction and other complex traits such as educational
attainment (Okbay et al. 2022; Cesarini and Visscher 2017). While there
is great potential in utilizing the findings from GWAS to support the
development of new drugs and approach the reality of personalized
medicine based on individual risk evaluation, the application of GWAS
as a research tool comes with ethical and social responsibility.
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